Марка стали 10 (заменители 08, 15, 08кп). цифра 10 означает, что это конструкционная сталь и в среднем в марке содержится 0,10% углерода, а остальные примеси незначительны.

Класс: Сталь конструкционная углеродистая качественная

Вид поставки (ГОСТ сталь 10): сортовой прокат в том числе фасонный: ГОСТ 1050-88, Круг: ГОСТ 2590-2006, Квадрат: ГОСТ 2591-2006, Шестигранник: ГОСТ 2879-2006, Уголок: ГОСТ 8509-93, ГОСТ 8510-86, Швеллер: ГОСТ 8240-97, Балка: ГОСТ 8239-89. Калиброванный пруток ГОСТ 10702-78, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78. Шлифованный пруток и серебрянка ГОСТ 10702-78, ГОСТ 14955-77. Лист толстый: ГОСТ 1577-93, ГОСТ 19903-74. Лист тонкий ГОСТ 16523-97. Лента ГОСТ 6009-74, ГОСТ 10234-77. Полоса ГОСТ 1577-93, ГОСТ 103-2006, ГОСТ 8731-74, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 10705-80, ГОСТ 10704-91, ГОСТ 1060-83,ГОСТ 5654-76, ГОСТ 550-75.

Использование в промышленности: детали, работающие при температуре от -40 до 450 °C, к которым предъявляются требования высокой пластичности, после химико-термической обработки - детали с высокой поверхностной твердостью при невысокой прочности сердцевины.

Химический состав в % стали марки 10						
С	0,07 - 0,14					
Si	0,17 - 0,37					
Mn	0,35 - 0,65					
Ni	до 0,25					
S	до 0,04					
Р	до 0,035					
Cr	до 0,15					
Cu	до 0,25					
As	до 0,08					
Fe	~98					

Свойства и полезная информация:

Удельный вес: 7856 кг/м³

Твердость материала: HB 10^{-1} = 143 МПа

Температура критических точек: $Ac_1 = 732$, $Ac_3(Ac_m) = 870$, $Ar_3(Arc_m) = 854$, $Ar_1 = 680$

Свариваемость материала: без ограничений, кроме деталей после химико-термической обработки. Способы сварки: РДС, АДС под флюсом и газовой защ

Обрабатываемость резанием: в горячекатанном состоянии при НВ 99-107 и σ_B =450 МПа, К $_{U \text{ тв. спл}}$ =2,1 и $K_{U \text{ б.ст}}$ =1,6

Температура ковки, °C: начала 1300, конца 700. Охлаждение на воздухе.

Флокеночувствительность: не чувствительна. **Склонность к отпускной хрупкости:** не склонна.

	Механические свойства стали 10								
ГОСТ	Состояние поставки, режим термообработки	σ _в (МПа)	δ ₅ (%)	ψ%	нв , не более				
1050-88	Сталь горячекатаная, кованая калиброванная и серебрянка 2-й категории после нормализации	335	31	55					
10702-78	Сталь калиброванная и калиброванная со специальной отделкой: после отжига или отпуска после сферодизирующего отпуска закаленная без термообработки	335-450 315-410 390		55 55 50	143 143 187				
1577-93	Полосы нормализованные или горячекатаные	335	8	55					
16523-70	Лист горячекатаный (образцы поперечные) Лист холоднокатаный (образцы поперечные)	295-410 295-410							
4041-71	Лист термически обработанный 1-2й категории	295-420	32		117				
8731-87	Трубы горячедеформированные термообработанные	355	24		137				
8733-87	Трубы холодно- и теплодеформированные термообработанные	345	24		137				
	Цементация 920-950 °C. Закалка 790-810 °C, вода. Отпуск 180-200 °C, воздух.	390	25	55	сердц. 137 поверхн. 57-63				

Температура испытаний, °С	σ _{0,2} (МПа)	σ₃(МПа)	δ ₅ (%)	ψ%	КСU (кДж / м²)					
нормализация 900-920 °C										
20	260	420	32	69	221					
200	220	485	20	55	176					
300	175	515	23	55	142					
400	170	355	24	70	98					
500	160	255	19	63	78					

	Предел выносливости стали 10						
σ-1, МПА	???????	n	Термообработка				
157-216	51	10 ⁶	Нормализация 900-920 °C σ⁴⁰⁰ _{1/10000} =108 МПа, σ⁴⁰⁰ _{1/100000} =78 МПа, σ⁴⁵⁰ _{1/10000} =69 МПа, σ⁴⁵⁰ _{1/100000} =44 МПа,				

Ударная вязкость стали 10 КСU, (Дж/см²)									
T= +20 °C	T= +20 °C								
235	196	157	78	Отсутствует					
73-265	203-216	179		Нормализация					
59-245	49-174	45-83	19-42	Отжиг					

	Прокаливаемость стали 10 (ГОСТ 4543-71)							
Расстояние от торца, мм Примечание								
1,5	3	4,5	6					
31	29	26	20,5	Твердость для полос прокаливаемости, HRC				
	•	•						

Физические свойства стали 10

Т (Град)	E 10 -5 (МПа)	҈ 10 ⁶ (1/Град)	҈ (Вт/(м∙град))	② (κг/м³)	С (Дж/(кг·град))	R 10 ⁹ (Oм·м)
20	2.1			7856		140
100	2.03	12.4	57	7832	494	190
200	1.99	13.2	53	7800	532	263
300	1.9	13.9	49.6	7765	565	352
400	1.82	14.5	45	7730	611	458
500	1.72	14.85	39.9	7692	682	584
600	1.6	15.1	35.7	7653	770	734
700		15.2	32	7613	857	905
800		12.05	29	7582	875	1081
900		14.08	27	7594	795	1130
1000		12.6			666	
1100		14.4			668	

Особенности конструкционной стали марки 10: среди различных методов механико-термической обработки, направленных на получение оптимальной субструктуры, обеспечивающей повышение сопротивления ползучести и жаропрочности металлов и сплавов, наибольший эффект улучшения свойств железа и стали получен в результате так называемой многократной механико-термической обработки (ММТО). Последняя заключается в многократном деформировании металла растяжением на полную длину площадки текучести, чередующемся со старением при 100-200° С (для железа и его сплавов). ММТО снижает скорость ползучести стали 10 при 400° С на несколько порядков и значительно повышает кратковременную прочность (предел текучести в 2,5 раза, предел прочности на 65-70%) в сравнении с отожженным состоянием.